SQLiteTracker
- class sklearn_evaluation.SQLiteTracker(path: str)
A simple experiment tracker using SQLite
Click here to see the user guide.
- Parameters
path – Database location
- comment(uuid, comment)
Add a comment to an experiment given its uuid
- insert(uuid, parameters)
Insert a new experiment
- new()
Create a new experiment, returns a uuid
- query(code)
Query the database, returns a pandas.DataFrame
Examples
>>> from sklearn_evaluation import SQLiteTracker >>> tracker = SQLiteTracker(':memory:') # example in-memory db >>> tracker.insert('my_uuid', {'a': 1}) >>> df = tracker.query( ... "SELECT uuid, json_extract(parameters, '$.a') FROM experiments")
- recent(n=5, normalize=False)
Get most recent experiments as a pandas.DataFrame
- update(uuid, parameters)
Update the parameters of an empty experiment given its uuid